

BENGALURU CITY UNIVERSITY

CHOICE BASED CREDIT SYSTEM (Semester Scheme with Multiple Entry and Exit Options for Under Graduate Course- as per NEP 2020)

> Syllabus for Zoology (III & IV Semester)

> > 2022-23 onwards

BENGALURU CITY UNIVERSITY Proceedings of the meeting of BOS (UG) in Zoology.

Reference:

- 1. G.O. ED: 260/USE/2019(part-1), Bangalore dated 15.09.2021
- 2. Email from HEC, GOK dated 15.09.2021
- 3. U.O No: BCU/Syn/BOS/Syllabus/157/2022-23 dtd. 17.08.2022.

Adverting to above, the draft of the syllabus prepared by the faculty of Bangalore University with support of Curriculum design/ Syllabus framing Committee set by Higher Educational Council (HEC), Government of Karnataka (GOK) pertaining to NEP. The syllabus of B. Sc Zoology was circulated well in advance by online mode to all the members of BOS, for scrutiny.

A meeting of the BOS (UG) in Zoology was held at Dept. of Life Science, Central College on Friday, the <u>26th August 2022</u> during 10.00 to 4.00 pm to reach the final consensus on the given agenda.

Agenda: Approval of syllabus for BSc in Zoology theory and Practical and Scheme of examination for III and IV semesters of Bangalore University, Bangalore.

Resolution:

- The proposed syllabus for BSc in Zoology theory and Practical and Scheme of examination for III and IV semesters were scrutinized thoroughly, finalised with appropriate inclusion(s) and deletion(s) of content(s) and finally approved.
- 2. The panel of Examiners (Both internal and external) for B.Sc. in Zoology (UG) for the year 2022-23 was approved.

Members Participated

1. Dr. P. Mahaboob Basha, Prof. of Zoology & Chairman, Dept of Zoology, BUB

2. Dr. Shall and Associate Professor in Zoology, Hall and A. Bangalore. Member

- 3. Mr. Chandrappa, Associate Professor in Zoology, GFGC, Yelahanka, Bangalore.
- 4. Dr. Hemalatha A, Asso. Professor in Zoology, Maharani Cluster University, B'lore Member -
- 5. Dr. Srivatsa S, Associate Professor in Zoology, Vijaya College, Bangalore.
- 6. Dr. Ganesh U, Associate Professor in Zoology, MES College, Bangalore.
- 7. Dr. Shubha M, Associate Professor in Zoology, BMS College, Bangalore.
- 8. Ms. Dhanalakshmi, Associate Professor in Zoology, Vijaya College, Bangalorc
- 9. Dr. Ashok CH, Associate Professor in Zoology, Nrupathunga University, Bangalore. Member
- 10. Dr. CE Triveni Associate Professor in Zoology, VV Puram College, Bangalore.

The meeting concluded with the chairman thanking all members for their cooperation.

(P. MAHABOOB BASHA) CHAIRMAN BOS (UG) B. Sc in Zoology

Member proc 12

Chairman

Member

Member

Member

Member Member. ARSE

Date: 26.08.2022

FOREWORD

National Education Policy (NEP) 2020 seeks to transform the Higher Education system in India by introducing the exit and entry option to the students. Selecting courses of choice will improve the education quality of the students. A creative combination of disciplines like Core, Open Elective, and Elective courses with multi-disciplinary nature is one key recommendation of NEP 2020.

The multiple exit and entry options in the Higher Education System would remove rigid boundaries and create new possibilities for students to choose and learn the courses of their choice anywhere in India can pave the wave for improving student progress. A formal system of credit recognition, credit accumulation, credit transfers and credit redemption is a praiseworthy recommendation in the education system. Karnataka is the first state in the country to implement NEP in higher education. The state come up with the NEP framework for all the UG-PG programmes starting from the academic year 2021.

The prominent features of the NEP framework are:

- 1. Flexibility in choosing subjects and even disciplines for the graduate programmes.
- 2. Vertical and horizontal mobility across subjects throughout the programme.
- 3. Multiple entry and exit points.
- 4. Main streaming of skill based courses.
- 5. Credit based evaluation system.
- 6. Integration of research into IV year of the programme leading to Honors degree.
- 7. Post-graduate Diplomas in respective disciplines.

I am delighted to present curriculum structure and syllabus of B. Sc Degree in Zoology with multiple exist entry with skills and job opportunities in point of exit system. I hope that the curriculum structure and syllabus will pave the way for overall development of the student community. I ensure that, students community will procure the benefits at large in higher education

Dr. P Mahaboob Basha Chairman BOS (UG) in Zoology Bengaluru City University Name of the Degree Program: **B. Sc., Hons** Discipline Core: **Zoology** Total Credits for the Program: **50/100/142/184/268** Starting year of implementation: **2021-22 (I & II sem) 2022-23 (III & IV sem)** Progressive Certificate, Diploma, Bachelor Degree or Bachelor Degree with Honours Provided at the End of Each Year of Exit of the Four-year Undergraduate Programme/ Five-year Integrated Master's Degree Programme

Introduction

The curriculum framework takes into account the need to maintain globally competitive standards of achievement in terms of the knowledge and skills in Zoology and allied courses, as well develop scientific orientation, spirit of enquiry problem solving skills and human and professional values which foster rational and critical thinking in the students. This course serves as plethora of opportunities in different fields right from classical to applied Zoology.

AIMS AND OBJECTIVES OF UG PROGRAM IN ZOOLOGY

- The Program offers both classical as well as modern concepts of Zoology in higher education.
- It enables the students to study animal diversity in both local and global environments.
- To make the study of animals more interesting and relevant to human studies more emphasis is given to branches like behavioral biology, evolutionary biology and economic Zoology.
- More of upcoming areas in cell biology, genetics, molecular biology, biochemistry, genetic engineering and bioinformatics have also been included.
- Equal importance is given to practical learning and presentation skills of students.
- The lab courses provide the students necessary skills required for their employability.
- Skill enhancement courses in classical and applied branches of Zoology enhance enterprising skills of students.
- The global practices in terms of academic standards and evaluation strategies.
- Provides opportunity for the mobility of the student both within and across the world.
- The uniform grading system will benefit the students to move across institutions within India to begin with and across countries.
- It will also enable potential employers in assessing the performance of the candidates across the world.

Type of Course	Formative Assessment / IA Marks	Summative Assessment Marks
Theory	40	60
Practical	25	25
Projects*	45	105
Experiential		
Learning		
(Internships etc.)		

Weightage for assessments

*In lieu of the research Project, two additional elective papers/ Internship may be offered

Credit distribution for the course

IIA. Model Structure of the Under-Graduate Program(s) in Universities and Colleges in Karnataka

Semester	Discipline Core (DSC)	Discipline	iscipline Ability Enhancement lective(DSE) / Credits) (L+T+P) Credits) (L+T+P)			Total	
	(Credits) (L+1+P)	Elective(DSE) / Open Elective (OE) (Credits) (L+T+P)			Skill based (Credits) (L+T+P)	Value based (Credits) (L+T+P)	
I	Discipline A1-(4+2) Discipline B1-(4+2)*	OE-1 (3)	L1-1(3), L2-1(3) (4 hrs. each)		SEC-1: Digital Fluency (2) (1+0+2)	Physical Education for Health &Wellness fitness(1)(0+0+2)(1) (0+0+2)	25
II	Discipline A2- (4+2) Discipline B2- (4+2)*	OE-2 (3)	L1-2(3), L2-2(3) (4 hrs. each)	Environmental Studies (2)		Physical Education - NCC/NSS/R&R(S&	25
				Exit option with	Certificate (50 credits))	
III	Discipline A3- (4+2) Discipline B3- (4+2) (One Core to be chosen)	OE-3 (3)	L1-3(3), L2-3(3) (4 hrs. each)		SEC-2: Artificial Intelligence (2)(1+0+2)	Physical Education- NCC/NSS/R&R(S&	25
IV	Discipline A4- (4+2) Discipline B4- (4+2)	OE-4 (3)	L1-4(3), L2-4(3) (4 hrs. each)	Constitution of India (2)		Physical Education - NCC/NSS/R&R(S&	25
	Exit option with Diplor	na in Science (100 credits)) OR Choose any or	ne of the core subje	ects as Major and the o	ther as Minor	
V	Discipline A5-(3+2) Discipline A6-3+2) Discipline B5-(3+2)	Vocational-1 (3)			SEC-3: SEC such as Cyber Security (2) (1+0+2)		20
VI	Discipline A7-(3+2) Discipline A8-(3+2) Discipline B6-(3+2)	Vocational-2 (3) Internship (2)			SEC-4: Professional Communication (2)		22
	Exit option with Bachelo	or of Science Degree, B. Se	c. Degree in Zoolog	y (142 credits) or c	continue studies with th	e Major in the third year	L.
VII	Discipline A9-(3+2) Discipline A10-(3+2) Discipline A11-(3)	Zoology E-1 (3) Zoology E-2 (3) Res. Methodology (3)					22
VIII	Discipline A12-(3+2) Discipline A13-(3) Discipline A14-(3)	Zoology E-3 (3) Research Project (6)*					20
	Awa	rd of Bachelor of Science I	Honours Degree, B	.Sc.(Hons.) Degree	in Zoology (184 credits	\$)	

*BOS resolved to adopt only B1 and B2 core subjects for the year 2021-22

Semester	Name of the course/credits	What all program outcomes the course addresses (not exceeding 3 /course)	Pre- requisite course(s)	Concurrent course	Pedagogy	Assessment
1 Semester A1 Core	Cytology, Genetics and Infectious Diseases (4)	 The structure and functions of animal cell, cell organelles, cell- cell interactions, process of reproduction leading to new organisms. The principles of inheritance, Mendel's laws and the deviations. Inheritance of chromosomal aberrations in humans by pedigree analysis in families. 	Student must have studied Biology or equivalent subjects in Class 12.	Lab on Cell Biology and Genetics (2)	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Problem Solving/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of pedagogy,
1 Semester B1 Core	Biology of Non- Chordates (4)	 Learn the systematics and biology of non- chordates through their adaptive features. Study the functional biology of non-chordates through their body organization. Comprehend identification of species and their evolutionary relationships. 	Student must have studied Biology or equivalent subjects in Class 12.	Lab on Biology of Non- Chordates (2)	Lectures/Videos/ Seminars/Case study/Project/ Formative Assessment/ Summative	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of pedagogy,
1 Semester OE1Open Elective course	Economic Zoology (3)	 Acquaint the knowledge about basic procedure and methodology of integrated animal rearing. Students can start their own business i.e. self- employments. Get employment in different sectors of Applied Zoology 	Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Problem Solving/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of pedagogy,
SEC 1 Skill Enhanceme nt course	SEC 1 Digital fluency Vermiculture (2)		Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Problem Solving/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
2 Semester A2	Biochemistry and Physiology (4)	 In depth understanding of structure of biomolecules like proteins, lipids and carbohydrates. The thermodynamics of enzyme catalyzed reactions. To know various physiological processes of animals. Student must have studied Biology o equivalent subject Class 12. 	e A2 Lab on r Biochemistr ts in Physiology Hematology	Lectures/Vid study/Projec and Assessment/ (2) Assessment	leos/ Seminar/Case t/ Formative Summative	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,

SEMESTER WISE CURRICULUM STRUCTURE OF COURSES

2 Semester	Biology of	1.	Learn the systematics and	Student must have	Lab on Biology	Lectures/Videos/ Seminar/Case	Formative and Summative
B2	Chordates (4)		biology of Chordates	studied Biology or	of Chordates (2)	study/Project/ Formative	Assessment/Evaluation/
			through their adaptive	equivalent subjects in		Assessment/ Summative	Analysis of result/
			features.	Class 12.		Assessment	Application of Heutagogy,
		2.	2. Study the functional				
			through their body				
			organization				
		3.	Comprehend				
			identification of Chordate				
			species and their				
			evolutionary				
			relationships.				
2 Semester	Parasitology(3)			Student must have		Lectures/Videos/ Seminar/Case	Formative and Summative
OE2 Open				studied Biology or		study/Project/ Formative	Assessment/ Evaluation/
Elective				equivalent subjects in		Assessment/Summative	Analysis of result/
course				Class 12.		Assessment	Application of Heutagogy,
2 Skill	Environmental	1.	Sericulture is an agro-	Student must have		Lectures/Videos/ Seminar/Case	Formative and Summative
Enhanceme	Studies		based industry which	studied Biology or		study/Project/ Formative	Assessment/ Evaluation/
nt course	Sericulture (2)		gives economic	equivalent subjects in		Assessment/ Summative	Analysis of result/
			empowerment to the	Class 12.		Assessment	Application of Heutagogy,
		2	students.				
		2.	un as a small scale				
			industry by the small				
			farmers and				
			unemployed youth.				
		3.	Get jobs in teaching				
	<u> </u>	1	EX	IT OPTION WITH CERT	IFICATE (50 CREE	DITS)	<u> </u>
						-	

3. A3 Core Course	Molecular Biology Bioinstrumentati on & Techniques in Biology (4)	Certificate Course in Zoology	Lab on Molecular Biology, Bioinstrumentation & Techniques in Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
3B3 Core Course	Comparative Anatomy and Microanatomy (4)	Certificate Course in Zoology	Lab on Comparative Anatomy and Microanatomy (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
3OE-3 Open Elective cours	Endocrinology e (3)	Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
3 Semester Skill Enhancement course	SEC 3 Artificial Intelligence Apiculture (2)	Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
4 A4 Core curse	Gene Technology, Immunology and Computational Biology (4)	Certificate Course in Zoology	Lab on Genetic Engineering And Counselling (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
4 B4 Core Course	Cell Biology and Genetics (4)	Certificate Course in Zoology	Lab on Cell Biology and Genetics (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
4 Sem OE 4 Open Elective Course	Animal Behavior (3)	Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
4 Semester Skill Enhancement course	Constitution of India (2) Poultry	Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
			EXIT OPTION WITH DI	PLOMA (100 CREDITS)	

5 A5 Major Core Course	Non-Chordates and Economic Zoology (4)	Diploma in Zoolo	gy Lab on Non- Chordates and Economic Zoology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
5 A6 Major Core Course	Chordates and Comparative Anatomy (3)	Diploma in Zoolo	gy Lab on Chordates (Virtual Dissection) and Comparative Anatomy (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
5 B5 Minor Core Course	Animal Physiology and Animal Biotechnology (3)	Diploma in Zoolo	gy Lab on Animal Physiology and Animal Biotechnology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment.	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy.
5 DSEC1	Vocational -1 Aquatic Biology (3)	Diploma in Zoolo	gy	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy.
5 SEC 3 Skill Enhancement course	Cyber Security Integrated Animal Rearing (2)	Diploma in Zoolo	gy	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
6 A7 Major Core Course	Evolutionary and Developmental Biology (3)	Diploma in Zoolo	bgy Lab on Evolutionary and Developmental Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Institute/Formative Assessment/ Summative Assessment.	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy.
6 A8 Major Core Course	Environmental Biology, Wildlife management and Conservation (3)	Diploma in Zoolo	gy Lab on Environmental Biology, Wildlife management and Conservation (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
6 B6 Minor Core Course	Animal Behavior (3)	Diploma in Zoolo	gy Lab on Animal Behaviour (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment.	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy.
DSEC	Vocationa-2 Entomology-3 Internship (2)	Diploma in Zoolo	gy	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,

6 Skill Enhancemen t Course	SEC 4 Professional Communication Fish Culture (2)	Diploma in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
			EXIT OPTION W	TH B. Sc. DEGREE (142 CREDITS)	
7 A9 Major Core Course	Ethology (3)	Degree in Bachelor Of Science in Zoology	Lab on Ethology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
7 A8 Major Core Course	Evolution and Zoogeography (3)	Degree in Bachelor Of Science in Zoology	Lab on Evolution and Zoogeography (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
7A9 Major Core Course	Genetics and Computationa I Biology (3)	Degree in Bachelor Of Science in Zoology	Lab on Advanced Genetics and Computational Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
7	Research methodology (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to research lab/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
7 DSEC	Zoology E-1 (3) Radiation Biology	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
7DSEC	Zoo Management Zoology E-2 (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
8 A12 Major Core Course	Immunology and Stem Cell Biology (3)	Degree in Bachelor Of Science in Zoology	Lab on Immunology and Stem Cell Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
8A13 Major Core Course	Advanced Molecular Biology and Biostatistics (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,

8A 14 Major	Genomics and	Degree in Bachelor Of		Lectures/Videos	Formative and Summative
Core Course	Proteomics (3)	Science in Zoology		/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative	Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
8	RESEARCH PROJECT (6)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
8DSEC1	<i>Any one of the below 4 choice</i> E-3 Neurosciences	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
8DSEC2	E-3 Parasitology(3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
8DSEC3	E-3 Animal Experimentation and Ethics(3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
8DSEC4	E-3 Behavioral Biology(3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
		EXIT	T OPTION WITH B. Sc	. HONOURS DEGREE (184 CREDITS)	
9 A15 Major Core Course	Animal Biotechnology and Genetic Engineering (3)	Degree in Bachelor of Science Honors	Lab on Animal Biotechnology and Genetic Engineering (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
9 A 16 Major Core Course	Microanatomy Histochemistry and Histopathology (3)	Degree in Bachelor of Science Honors	Lab on Microanatomy, Histochemistry and Histopathology (2)	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
9 A 17 Major Core course	Molecular Endocrinology (3)	Degree in Bachelor of Science Honors	Lab on Molecular Endocrinology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Lab/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,

9 A18	Research methodology (3) of 7 th sem) Applied Zoology (In Place of	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
9DSEC1	E-1 Animal Biotechnology (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
9DSEC2	E-1 Toxicology (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
9 Skill Enhancement Course	Cattle Farming (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/ Evaluation/ Analysis of result/ Application of Heutagogy,
10 A 19 Major	Physiology of Reproduction (3)	Degree in Bachelor of Science Honors	Lab on Reproductive Physiology (2)	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment /Evaluation/ Analysis of result/ Application of Heutagogy.
10 A 20 Major	Developmental Biology (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
10 A 21 Major	Chronobiology (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Lab/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
10 A 22	Nano Biotechnology (3)	Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,

10 DSEC 1	RESEARCH PROJECT Or	Degree in Bachelor of Science Honors	Lectures/Videos / Seminars/Case study/Project/ Group	Formative and Summative Assessment/Evaluation/ Analysis of
	Any two		discussion/Visit to Industry/Formative	result/ Application of Heutagogy,
	DSEC Or INTERNSHI		Assessment/ Summative Assessment	
	P (6)			
10 DSEC 2	E-3 Insect Vector	Degree in Bachelor of	Lectures/Videos	Formative and Summative
	& Diseases (3)	Science Honors	/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
10 DSEC 3	E-3 Human Physiology (3)	Degree in Bachelor of Science Honors	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy
10 DSEC 4	E-3 Food, Nutrition & Health (3)	Degree in Bachelor of Science Honors	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
10 Skill Enhancemen t	E-3 Animal Breeding Techniques (3)	Degree in Bachelor of Science Honors	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Evaluation/ Analysis of result/ Application of Heutagogy,
	I I	· · · · · · · · · · · · · · · · · · ·	EXIT OPTION WITH M. Sc. DEGREE (268 CREDITS)	

III Semester BSc Zoology Core Course Content

Course Title/Code: Molecular Biology, Bioinstrumentation & Techniques in Biology	Course Credits: 4
Course Code: DSCC5ZOOT3	L-T-P per week: 4-0-0
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks: 60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to understand:

- 1. After successful accomplishment of the course, the learners will be able to acquire better understanding and comprehensive knowledge regarding most of the essential aspects of Molecular Biology subject which in turn will provide a fantastic opportunity to develop professional skill related to the field of molecular biology.
- 2. The course will mainly focus on the study of principal molecular events of cell incorporating DNA Replication, Transcription and Translation in prokaryotic as well as eukaryotic organisms.
- 3. Acquiring knowledge on instrumentation and techniques in biology.

Semester III- Zoology Core Course III Content:

Content	Hours
Unit I	14
 Chapter 1: Process of Transcription Fine structure of gene (Cistron, Recon, Muton) RNA polymerases - types and functions Transcription in prokaryotes and eukaryotes 	8
 Chapter 2: Process of Translation Genetic code and its salient features Translation in prokaryotes and eukaryotes 	6
Unit II	14
 Chapter 3. Regulation of Gene Expression-I Regulation of gene expression in prokaryotes- lac operon (inducible) and trp operon (repressible) in <i>E. coli</i> Regulation of gene expression in eukaryotes - Role of chromatin (Euchromatin and Heterochromatin) in gene expression Post-transcriptional modification: capping, splicing, polyadenylation Concept of RNA editing (mRNA), gene silencing, and, RNAi 	9
 Chapter 4. Regulation of Gene Expression-II Post-translational modifications: purpose, advantages, and significance; glycosylation, methylation, phosphorylation, and acetylation. Intracellular protein degradation (lysosomal autophagy and ubiquitin proteasome pathway). 	5

	Unit III	14
Chap	ter 5: Microscopy	9
•	Principles and applications of Light microscopy, Dark field microscopy, Phase contrast microscopy, Fluorescence microscopy, Confocal microscopy and Electron microscopy (SEM and TEM).	
Chap	ter 6: Centrifugation and Chromatography	5
•	Principle of centrifugation. Types of centrifuges: High speed and Ultracentrifugation. Principle and applications of Chromatography: TLC and HPLC.	
	Unit IV	14
Chap • •	 ter 7: Biochemical Instrumentation Colorimetry and Spectrophotometry: Beer-Lambert's law, Absorption spectrum, UV-VL Spectrophotometer. pH meter, measurement of pH Principle, applications and safety measures of Radio-tracer techniques - Autoradiography. 	6
Chap	ter 8: Molecular Techniques	8
•	Principle and applications of Agarose gel-electrophoresis, SDS-PAGE, DNA Sequencing (Sanger's method) PCR, DNA Fingerprinting, ELISA, Southern Blotting and Western Blotting.	

Suggested Readings:

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	15
Written Assignment/Presentation/Project / Term	15
Class performance/Participation	10
Total	40

Zoology

Core Course Lab Content

Semester III (Practical III)

Course Title: Molecular Biology, Bioinstrumentation	Course Credits: 2
and Techniques in Biology	
Course Code: DSCC5ZOOP3	L-T-P per week: 0-0-4
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 25	Summative Assessment Marks:25

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. At the end of the course, students will be able to understand the applications of biophysics and principle involved in bio-instruments.
- 2. Understand the methodology involved in bio techniques.
- 3. Students can Demonstrate knowledge and practical skills of using instruments in biology and medical field.
- 4. They can perform techniques involved in molecular biology and diagnosis of diseases.

Lab Course Con	tent
----------------	------

	List of experiments	14 units (1unit- 4hrs)
1.	To study the principle and applications of simple, compound and binocular microscopes.	1
2.	To study the principle and applications of various lab equipments- pH meter, Electronic balance, Vortex mixer, use of glass and micropipettes,	2
3.	Laminar air flow, Incubator, shaker, Water bath and centrifuge. To prepare Buffer solutions (Phosphate, Citrate, Tris-HCl buffer)	1
4.	To estimate amount of RNA by Orcinol method.	2
5.	Demonstration of differential centrifugation to fractionate components in a given mixture.	1
6.	To estimate amount of protein by Lowry's method.	2
7.	To identify different unknown amino acids using ascending paper chromatography.	1
8.	Extraction of DNA from the given animal tissue sample.	2
9.	To estimate amount of DNA by di-phenyl amine (DPA) method.	2

Suggested Readings:

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter. Molecular Biology of the Cell, 4th edition. New York: Garland Science (2002).
- Daniel L. Hartl and Maryellen Ruvolo. Genetics: Analysis of Genes and Genomes, 8th Edition. Burlington, Mass.: Jones & Bartlett Learning (2012).
- 3. Gerald Karp. Cell and Molecular Biology: Concepts and Experiments, 5th Edition. Wiley Publication (2008).
- 4. Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Freeman. Molecular Cell Biology, 5th edition. W. H. & Company (2003).
- 5. James D. Watson, Tania A. Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Losick. Molecular Biology of the Gene, 5th edition. Cold Spring Harbor Laboratory Press (2003).
- 6. Stryer, Lubert. Biochemistry, 2nd Edition. W. H. Freeman and Company, New York (1981).

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar

Formative Assessment		
Assessment Occasion	Weightage in Marks	
House Examination/Test	05	
Written Assignment/Presentation/Project /Term papers/Seminar	10	
Class performance/Participation	10	
Total	25	

Semester: IV Semester, B. Sc., (Hons) Zoology

Course Title: Core Course Content: Gene Technology Immunology and Computational Biology	Course Code: DSCC5ZOOT4
Course Type: Discipline Core Theory, L-T-P: 4-0-0	Course Credits: 4
Total Contact Hours: 56	Duration of ESA: 3 Hrs.
Formative Assessment Marks: 40	Summative Assessment Marks:60

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Acquaint knowledge on versatile tools and techniques employed in genetic engineering and recombinant DNA technology.
- 2. An understanding on application of genetic engineering techniques in basic and applied experimental biology.
- 3. To acquire a fundamental working knowledge of the basic principles of immunology.
- 4. To understand how these principles, apply to the process of immune function.
- 5. Use, and interpret results of, the principal methods of statistical inference and design; helps to communicate the results of statistical analyses accurately and effectively; helps in usage of appropriate tool of statistical software.

Course Content	Hrs.
Unit I	14
 Chapter 1: Principles of Gene Manipulation Recombinant DNA Technology: Introduction, steps involved. Restriction Enzymes and Ligases. Nucleic acid modifying enzymes. Gene cloning Vector: Concept of plasmids-pBR322, Lambda phage vectors, Cosmids. Gene transfer techniques (Direct and indirect). Screening and selection of recombinant colonies. 	07
 Chapter 2: Applications of Genetic Engineering Transgenic animals (Transgenic cow, Transgenic Fish); Transgenic plants (cry protein); Gene silencing (Knock out mouse). Production of Human Recombinant insulin and Monoclonal antibodies (Hybridoma technology). Applications of Gene Therapy in SCID Brief account of Biosensors. 	
Unit II	14

	1
Chapter 3: Introduction to the Immune System	07
 Defence against diseases: Introduction, First and second line of defence, Innate and acquired immunity; Antigen presenting cells (APC's), Role of B and T-lymphocytes (Humoral immunity and cell mediated immunity), primary and secondary immune response. Types of immunity. Functional aspects of organs of the Immune system - Thymus and bone marrow, spleen, Lymph Node, Small intestine and Liver (Peyer's patches and Von Kupffer cells). 	
Chapter 4: Antigens and Antibodies	07
 Antigens and haptens: Properties (foreignness, molecular size, heterogeneity). B and T cell epitopes. Structure of IgG and functions of different classes of immunoglobulins. Major histocompatibility complex - Structure of MHC I & II. 	
Unit III	14
Chapter 5: Clinical Immunology	07
 Immunity against diseases of viral, bacterial and protozoan infections. Vaccines: Types and Uses - Immunization schedule for children. Transplantation immunology: Transplantation of organ- Types, graft rejection and Immuno-suppressors. 	
Chapter 6: Bioinformatics	07
 Databases: Sequence and structural Sequence analysis (homology): Pairwise and Multiple Sequence alignment- BLAST, CLUSTALW, Sequence alignment- FASTA. Scope and applications of Bioinformatics. 	07
Unit IV	14
 Chapter 7: Biostatistics I Measures of central tendency: Mean, Median, Mode. Data summarizing: Frequency distribution, Graphical presentation - bar diagram, pie diagram, histogram. Elementary idea of probability and its applications. 	07
Chapter 8: Biostatistics II	1
 Measures of dispersion: Range, Standard Deviation, Variance. Correlation and Regression. 	
• Tests of significance: F-test, ANOVA, t-test and Chi square test.	07

Topics Suggested for Assignment/ Formative Assessment:

1. Q/A, Short Question, Quiz, MCQ, Assignment etc.

Recommended Books:

- 1. Primrose & Twyman. Principles of Genome Analysis and Genomics. Blackwell (2003).
- 2. Hartl& Jones. Genetics: principles & Analsysis of Genes & Genomes. Jones & Bartlett (1998).
- 3. Sambrooket al. Molecular Cloning Vols I, II, III. CSHL (2001).
- 4. Primrose. Molecular Biotechnology. Panima (2001).
- 5. Clark & Switzer. Experimental Biochemistry. Freeman (2000)
- 6. Sudbery. Human Molecular Genetics. Prentice-Hall (2002).
- 7. Wilson. Clinical Genetics-A Short Course, Wiley (2000).
- 8. Pasternak. An Introduction to Molecular Human Genetics. Fritzgerald (2000).
- 9. Biostatistical Analysis (Fourth Edition) by Jerrold H. Zarr, Pearson Education Inc., Delhi.

- 10. Statistical Methods (Eighth Edition) by G. W. Snecdecor and W. G. Cochran, Willey Blackwell
- 11. Biostatistics (Tenth Edition) by W.W. Daniel and C. L. Cross, Wiley
- 12. Introductory Biological Statistics (Fourth Edition) by John E. Havel, Raymond E. Hampton and Scott J. Meiners
- 13. Westhead et al Bioinformatics: Instant Notes. Viva Books (2003)

Web Sources:

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/ Field Report/ Project	15 Marks
Test	20 Marks
Participation in class	05 marks
Total	40 Marks

Semester: IV

Course Lab Content

Course Title: Gene Technology, Immunology and Computational Biology	Course Credits: 02
Course Type: Minor Discipline Core Practical, L-T-P: 0-0-4	Corse Code: DSCC5ZOOP4
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 25	Summative Assessment Marks: 25
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Accurately, safely and appropriately use all the equipment regularly used in Molecular Biology (DNA manipulation, including balances, pipettes, electrophoresis and centrifuges).
- 2. Prepare chemical solution and reagents to the precision appropriate to the task.
- 3. Demonstrate knowledge of the biochemical basis underpinning the molecular biology techniques.

Lab IV Course Content

	List of labs to be conducted	14 units (1unit-4hr.
1.	Calculate the mean, median, mode and standard deviation (Measurement of	2
	pre and post clitellar lengths of earthworms)	
2.	Measure the height and weight of all students in the class and apply	1
	statistical measures.	
3.	Determination of ABO Blood group and Rh factor.	1
4.	To study Restriction enzyme digestion using teaching kits (Demonstration	2
	only).	
5.	To detect genetic mutations by Polymerase Chain Reaction (PCR) using	2
	teaching kits (Demonstration only).	
6.	Demonstration of agarose gel electrophoresis for detection of DNA.	1
7.	Demonstration of Polyacrylamide Gel Electrophoresis (PAGE) for	2
	detection of proteins.	
8.	To calculate molecular weight of unknown DNA and protein fragments	1
	from gel pictures. (<u>https://youtube/mCiCiO0cfbg</u>)	
9.	To learn nucleotide sequence database.	1
10.	To learn sequence alignment: Pairwise alignment (Protein/ DNA).	1

Pedagogy: Lectures, Presentations, videos, Labs, Assignments, Tests, Individual or group Field oriented Project Report.

Formative Assessment	
Assessment Occasion	Weightage in Marks
Assignment/Monograph	10
Test	10
Participation in class	05
Total	25

Semester: III Zoology

Open Elective Course Content

•	
Course Title: ENDOCRINOLOGY Course Code: OEC5ZOOT3	Course Credits:3
Total Contact Hours: 42	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks:60
Model Syllabus Authors:	

Course Outcomes (Cos):

At the end of the course the student should be able to:

Differentiate among endocrine, paracrine and autocrine systems.

- 1. Describe the different classes and chemical structures of hormones.
- 2. Identify the glands, organs, tissues and cells that synthesize and secrete hormones, hormone precursors and associated compounds.
- 3. Identify and discuss the integration of the endocrine system in general with focus on specific interactions.
- 4. Explain the consequences of under- and overproduction of hormones.

Course Content

Content	Hrs.
Unit I	14
 Chapter 1. About Endocrine glands Endocrine glands and classification of hormones. Characteristics and Transport of Hormones. Chapter 2. Hypothalamus -Hypothesis Hypothalamus as a neuroendocrine organ Pituitary – Structure and functions Chemical nature mode of action and functions Pituitary disorders 	
 Chapter 3. Pineal gland Structure and functions of Pineal gland. Hypo- and hyperactive states of the gland. 	
Unit II	14
 Chapter 4. Thyroid and parathyroid Histological structure of the glands. Chemical nature, mode of action, and functions of the hormones. Hypo-and hyperactive states of the glands. Chapter 5. Adrenal cortex and medulla – Histological structure of the gland. Chemical nature, and functions Hypo- and hyperactive states of the gland. Chapter 6. Prostaglandins. 	
Unit – III	14

Chapter 7: Pancreas:

- Pancreatic islets histological structure. Chemical nature, and function. Hormonal control of blood sugar.
- Hyperinsulinism and diabetes mellitus.
- Chapter 8: Gastro-intestinal hormones -
 - Functions and regulation of secretion of the hormones.

Chapter 9: Different types of physiological rhythms -

- Ultradian, circadian, infradian. Different zeitgebers and their relation with circadian clock
- Neural basis of biological clock and role of suprachiasmatic nuclei. Sleepwakefulness cycle. Time keeping genes. Jet-lag and shift work.

Text Books & Suggested Readings:

- 1. William's Text Book of Endocrinology Larsen et al.: An Imprint of Elsevier.
- 2. Endocrinology, Mac E. Hadley, Pearson Education.
- 3. The Kidney-An outline of Normal and Abnormal Functions, by H.E. Dewardener, ELBS.
- 4. Vander's Human Physiology, E.P. Widmaier et al., McGraw-Hill, Higher Education.
- 5. Concise Medical Physiology by S.K. Chaudhuri, New Central Book Agency.
- 6. Endocrinology. Vols.I, II and III by L.O. DeGroot. W.B. Saunders Co.
- 7. The Physiology of Reproduction, Vols.I & II, by E. Knobil and J.D. Neil. Raven Press.
- 8. Guyton and Hall. Textbook of Medical Physiology. 13th Edition.
- 9. Histology: A Text and Atlas. Sixth Edition. Ross & Pawlina. Lippincott Williams & Wilkins.
- 10. Vertebrate Endocrinology by David O. Norris.

Course Books published in English and Kannada may be prescribed by the Universities and Colleges.

Pedagogy: Chalk and Talk, PPT, Group discussion, Seminar.

At the end of the course the student will be able to:

- 1. Demonstrate comprehensive understanding of the structure, function and development of the human body as related to endocrinology physiology.
- 2. Demonstrate elementary understanding of the clinical applications of physiology.
- 3. Critically evaluate the impact of the recent information on the genesis of current concepts related to various topics of physiology

Formative Assessment				
Assessment Occasion	Weightage in			
House Examination/Test	15			
Written Assignment / Case Presentation / Project / Seminar	20			
Class performance/Participation	05			
Total	40			

Open Elective Course Content

Semester: IV Zoology

Course Title: Animal Behaviour Course Code: OEC5ZOOT4	Course Credits:3
Total Contact Hours: 42	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks:60

Course Outcomes (COs):

At the end of the course the students will be able to:

- 1. Examine and critically to evaluate the emergence of ideas that have shaped how we observe and collect data on animal behaviour.
- 2. Understand the main historical ideas that underpin animal behaviour theory
- 3. Critically review hypotheses to explain animal behaviour
- 4. Understand different methods for collecting data on animal behaviour
- 5. Have advanced their written and oral presentation skills.

Course Content

Content	42Hrs
Unit – 1	
Chapter 1. Introduction to Animal Behaviour	14
 Brief contributions of Karl Von Frish, Ivan Pavlov, Konrad Lorenz, Niko Tinbergen. Proximate and ultimate causes of behaviour. 	
Chapter 2. Patterns of Behaviour	
 Stereotyped Behaviors - Orientation and Reflex. Individual Behavioural patterns: Instinct and Learned Behaviour Associative learning, classical and operant conditioning, Habituation, Imprinting. 	
Unit – 2	14
 Chapter 3. Social Behaviour Social organization in Termites and Honey bees Social behaviour: Altruism. Conflict behaviour. Chapter 4. Sexual Behaviour Sexual dimorphism, Mate choice in peacock. Intra-sexual selection (male rivalry in red deer). Kinship theory: Relatedness & inclusive fitness. Parental care in fishes (Nest Building & cost benefit) 	
Unit – 3	14
 Chapter 5. Chronobiology Brief historical developments in chronobiology. Adaptive significance of biological clocks. Biological rhythms. Chapter 6. Communications in animals 	
 Bioluminescence in deep sea fishes and insects Territoriality in Monkeys and Dogs Role of pheromones in animal communication- Insects and Vertebrates. Communication in Honey bees (Waggle dance). 	

- 1. Animal Behaviour by Drickamar.
- 2. John Alcock, Animal Behaviour, Sinauer Associate Inc., USA.
- **3**. Paul W. Sherman and John Alcock, Exploring Animal Behaviour, Sinauer Associate Inc., Massachusetts, USA.
- 4. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros, Patricia J. DeCoursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderland, MA, USA
- 5. Insect Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lewis. (3rdEd) 2002 Barens and Noble Inc. New York, USA
- 6. Biological Rhythms: Vinod Kumar (2002) Narosa Publishing House, Delhi/ Springer-Verlag,

Germany. Pedagogy: Chalk and Talk, PPT, Group discussion, Seminar, Interaction, virtual lab, Lab visit

Formative Assessment	
Assessment Occasion	Weightage in
House Examination/Test	15
Written Assignment / Case Presentation / Project / Seminar	20
Class performance/Participation	05
Total	40

Course pattern and scheme of examination for B.Sc./ B.Sc. (Hons.) as per NEP (2021-22 onwards)

Subject: ZOOLOGY

SL No.			S	Hou wee	rs / ek	Exa	mination Pa	attern Ma	x. & Min.	Marks /I	Paper	Duration (ho	iration of Exam (hours)		Crea	Credits	
	nester		ing hour	~	al		Theory	-		Practica	al	~	al	Total Marks / pa	٨	al	
	Sen	Title of the paper	Teachi	Theor	Practic	Max.	.NIM	AI	Max.	MIN.	IA	Theor	Practic		Theor	Practic	
1	Ι	CORE subject	56	4	4	60	21	40	25	9	25	3	3	150	4	2	
		Open elective	42	3	-	60	21	40	-	-	-	2.5	-	100	3	-	
		Skill Enhancement Course	56	-	4	-	-	-	25	9	25	3	3	50	-	2	
2	Π	CORE subject	56	4	4	60	21	40	25	9	25	3	3	150	4	2	
		Open elective	42	3	-	60	21	40	-	-	-	2.5	-	100	3	-	
		Skill Enhancement Course	56	-	4	-	-	-	25	9	25	3	3	50	-	2	

Scheme of Internal Assessment Marks: Theory

Sl.	Particulars	IA Marks
No.		
1	Attendance	05
2	Internal Tests (Minimum of Two)	20
3	Assignments /Seminar / Case Study / Project work / Reports on - Field visits made for observation and collection of data etc.,	15
	TOTAL Theory IA Marks	40

Practicals:

Sl.	Particulars	IA Marks
No.		
1	Practical Test	10
2	Report / Seminar on practical experiments, etc.	10
3	Active participation in practical classes (Attendance)	05
	TOTAL Theory IA Marks	25

Scheme of Practical Examination BSc. Zoology III Semester Core Subject: Molecular Biology, Bioinstrumentation and Techniques in Biology

Du	ration: 3 hours	Max. marks: 25
1.	Extraction of DNA from the given animal tissue	
	OR	
	Estimation of DNA / RNA / Proteins	10M
2.	Separate and Identify the given unknown amino acids by using as	cending paper
	Chromatography	07M
3.	Identify and give the working principle of the spotters A and B	4X2-8M
		TOTAL Marks 25M
	000	

Scheme of Practical Examination BSc. Zoology IV Semester Zoology Core Subject: Gene Technology

	Zoology Core Subject. Gene rechnology	
Duration	: 3 hours	Max. marks: 25
1.	Determine the blood group of the given sample and comment	05M
2.	Problem on Chapter 7	06M
3.	Problem on Chapter 8	06M
4.	Identify and comment on the given spotters A and B	08M
	(PCR/PAGE/Restriction enzyme kit/FASTA/BLAST/Database)	
	TOTAL M	arks 25M

Following is the blue print of the question paper to be followed. (As per BOS resolution dated 20.09.2022) BSC III Semester Zoology Open Elective (OE)

ENDOCRINOLOGY

Max.Marks:60

 $(10 \times 2 = 20)$

Time: 2.5hours

Instructions to Candidates:

- 1. All Sections/parts are compulsory.
- 2. Draw neat labelled diagrams wherever necessary.

PART-A

I. Choose the correct answer from the given options below/ Write the correct answer to fill in the blank in each sentence. (30×1=30)

Here total 30 questions-(10 from each Unit) to be answered.

PART-B

II. Answer <u>any ten</u> of the following in one word or one sentence each: $(10 \times 1=10)$

Here out of 12 questions (4 from each Unit) *ten* have to be answered.

PART-C

III. Answer <u>any ten</u> of the following:

Here out of 12 questions (4 from each Unit) *ten* have to be answered.

Following is the blue print of the question paper to be followed. (As per BOS resolution dated 20.09.2022)

BSC IV Semester Zoology Open Elective (OE) ANIMAL BEHAVIOUR

Time: 2.5 hrs

Max.Marks:60

 $(10 \times 2 = 20)$

Instructions to Candidates:

- 1. All Sections/parts are compulsory.
- 2. Draw neat labelled diagrams wherever necessary.

PART-A

I. Choose the correct answer from the given options below/ Write the correct answer to fill in the blank in each sentence. (30×1=30)
 Here total 30 questions-(10 from each Unit) to be answered.

PART-B

II. Answer <u>any ten</u> of the following in one word or one sentence each: $(10 \times 1=10)$

Here out of 12 questions (4 from each Unit) *ten* have to be answered.

PART-C

III. Answer <u>any ten</u> of the following:

Here out of 12 questions (4 from each Unit) ten have to be answered.