ಬೆಂಗಳೂರು ನಗರ ವಿಶ್ವವಿದ್ಯಾನಿಲಯ

BENGALURU CITY UNIVERSITY

Office of the Registrar, Central College Campus, Dr. B.R. AmbedkarVeedhi, Bengaluru – 560 001. PhNo.080-22131385, E-mail: registrar@bcu.ac.in

No.BCU/BoS/SEP/Micro-Biotech-UG/ 1/2025-26

Date: 24.07.2025.

NOTIFICATION

Sub: B.Sc. III & IV Semesters Microbiology & Biotechnology

Syllabus of Bengaluru City University-reg.

Ref: 1. Recommendations of Board of Studies in the Microbiology & Biotechnology (UG)

2. Academic Council resolution No.03 dated. 09.07.2025

3. Approval of the Vice-Chancellor dated.24.07.2025

In pursuance of the resolution of the Academic Council under ref (2) above and with the approval of the Vice-Chancellor the Syllabus of III & IV Semester Microbiology and Biotechnology subject, recommendation in the BoS in Microbiology & Biotechnology (UG) is hereby notified for information of the concerned. This Syllabus will be effective from the academic year 2025-26.

The copy of the Syllabus is notified in the University Website: www.bcu.ac.in for information of the concerned.

REGISTRAR

To:

The Registrar (Evaluation), Bengaluru City University, Bengaluru.

Copy to;

- 1. The Dean, Faculty of Science, BCU.
- 2. The Chairman & Members of BoS in Microbiology and Biotechnology (UG), BCU.
- 3. The P.S. to Vice-Chancellor/Registrar/Registrar (Evaluation), BCU.
- 4. Office copy / Guard file / University Website: www.bcu.ac.in

CHOICE BASED CREDIT SYSTEM (As per SEP 2024)

Syllabus for III & IV Semester B.Sc. Microbiology (2025-26)

BENGALURU CITY UNIVERSITY REGULATIONS & SYLLABUS FOR MICROBIOLOGY

ir

Three-Year B.Sc. Course (SEP 2024)

Scheme of Instruction/ Examination:

- 1. The theory question paper for each paper shall cover all the topics in the pertaining syllabus with proportional weightage to the number of hours of instruction prescribed.
- 2. The practical Classes are to be conducted in batches of 10 students per batch (maximum 12) per teacher as per the University norms for the faculty of science for giving instructions, explaining the principles of experiments, supervising the conduct of experiments and correction of Records.
- 3. It is expected that each student conducts and learns the experiments in the practical classes.
- 4. Students are required to use biotechnology instruments and tools to run the experiments and record the outputs to the practical records in each practical class.
- 5. Maximum marks for practical records in the examinations is 5.
- 6. A study tour or visit to industries and research institutes for the students is strongly recommended to gain practical knowledge of applications of Biotechnology in Industries/Agriculture/Medical field and research.

B.Sc. CREDIT BASED SEMESTER SCHEME MICROBIOLOGY

SCHEME OF INSTRUCTIONS AND CREDITS

Paper No.	Title of the paper	Type of paper	Hours/ Week	Duration of Exam (Hours)	IA	Exam	Total Marks	Credits
			III SEMI	ESTER				
MBT -301	Biomolecules, Bioenergetics & Metabolism	Т	4	3	20	80	100	3
MBP -302	Biomolecules, Bioenergetics & Metabolism	Р	3	3	10	40	50	2
Elective – I	Biostatistics and Intellectual Property Rights	Т	2	1½	10	40	50	2
							200	7

	IV SEMESTER								
MBT -401	Genetics & Molecular Biology	Т	4	3	20	80	100	3	
MBP -402	Genetics & Molecular Biology	Р	3	3	10	40	50	2	
Elective – II	Computational Biology with AI Applications	T	2	1½	10	40	50	2	
Compulsory Practical	Computational Biology with AI Applications	Р	3	3	10	40	50	2	
							250	9	

Internal assessment:

Theory: (20)
(a) Tests and assignments – 15
(b) Attendance - 05

Practical: (10)(a) Tests – 10

B.Sc. SEMESTER SCHEME (SEP 2024) MICROBIOLOGY SCHEME OF THEORY EXAMINATION

Dur	ation: 3 Hours	Max.Marks: 80			
I.	Answer any 10 of the following: (out of 12)	$10 \times 2 \text{ marks} = 20 \text{ Marks}$			
	Questions 1 to 12				
II.	Answer any 6 of the following: (out of 8)	$6 \times 5 \text{ marks} = 30 \text{Marks}$			
	Questions 13 to 20				
III.	Answer any 3 of the following: (out of 5)	3 x 10 marks = 30 Marks			
	Questions 21 to 25.				

BANGALORE UNIVERSITY, BANGALORE Syllabus for B.Sc., Microbiology CBCS, SEMESTER III

MBT-301 – Biomolecules, Bioenergetics & Metabolism

Sessions	Total Contact	ĺ	arks	Duration of	Total Marks	
Per Week	Hours	Internal	End Semester	Examination	Marks	
		Assessment	Exam		100 Marks	
4	56	20 marks	80 marks	3 hours		
	hemical Concepts &	& Biomolecules			14 hours	
Biological S					4	
	d properties of the					
	vater; hydrophilic	• •		eids, bases, and		
	concepts of pH ar					
	s – Carbohydrates				3	
	s and proteins: [and properties	of 4	
	structure and classif			1	c 2	
	Fats: Definition, c		icture, properties	and importance	of 3	
	cids: types and class of Enzymes	SHICALIOH.			14 hours	
	to enzymes – De	efinition enzyme	unit specific ac	tivity and turnov		
	endoenzymes, cor			•		
	nd Multimeric enzy		a enzymes, 1302	ymes. Wonomen	,	
	e complex: Pyruva		se: Isozvme: Lact	ate Dehvdrogenas	se. 3	
Ribozymes, A		, 8		=, 8		
	nd Function of E	nzvmes:			8	
	enzymes: Apoenz	•	ors; prosthetic gi	oups (e.g., TPP)	;	
	(e.g., NAD); metal	•	, I &	1 (8)	´	
	on of enzymes: M		zyme action: act	ive site, transitio	n	
	ex, and activation		Ž	,		
	e <mark>nzyme action:</mark> Lo		othesis and Indu	iced Fit		
hypothesis.	•	, , ,				
••	nibition: Competit	tive, non-compe	titive, uncompet	itive, and		
feedback inl		, 1	, 1	,		
Unit 3: Bioe	nergetics and Resp	iration			14 hours	
	s: High energy co		ification, structure	e and significance		
oxidation red	uction reactions, eq	uilibrium constar	nt, redox potential.			
	Respiration: Electro					
	osphorylation, struct					
	rophic metabolism					
	espiration with spe	cial reference to	dissimilatory ni	trate reduction ar	nd	
sulphate redu		T: 1, , , ,	T' 1, 1	· · · · ·		
Microbial	Photosynthesis: orylation, CO ₂ fix					
		xation patitways	s: Carvin cycle,	сорп рашwa	у,	
Reductive TCA pathway. Unit 4: Metabolism						
	Breakdown of carbohydrates – Glycolytic pathways – EMP, HMP shunt/pentose					
	thway and ED pathy			in the period	se 4	
	n – Fermentative 1			olic, Lactic acid	_ 4	
	omo, acetic acid, pr					
fermentation.	. (5)	_				

Nitrogen Metabolism: Introduction to biological Nitrogen fixation, Ammonia	1			
assimilation and denitrification. (1)				
Amino acid degradation and biosynthesis: Deamination and decarboxylation- An				
overview of amino acids biosynthesis. (2)				
Lipid degradation and biosynthesis : β-oxidation of Palmitic acid; Biosynthesis of	3			
Palmitic acid.				

SEMESTER III MBT-302 – Biomolecules, Bioenergetics & Metabolism

Ses	sions	Total Contact	Ma	arks	Duration of N		otal larks
Per	r Week Units		Internal Assessment	End Semester Exam	Examination	50	Marks
	3 10 10 marks 40 marks 3 hours			3 hours			
No.	Exper	riments					Units
1	Prepai	ration of buffers-c	itrate and phosp	hate buffers			1
2	Estima	ation of reducing s	sugar glucose - 1	by DNS method			1
3	Estima	ation of protein by	Lowry's metho	od			1
4	Deterr	mination of growth	n curve for fung	i by colony diam	eter method		1
5	Identi	fication of fatty ac	ids and other lip	oids by TLC			1
6	Effect	of variables on er	zyme activity (amylase):			2
	a. Ten	nperature b. pH c.	substrate conce	ntration d. Enzyr	ne concentration	ì	
7	Deterr	mination of Km ar	d Vmax of amy	lase (Line weave	er- Burk plot;		1
	Micha	elis -Mentonequa	tion)				
8	Bioch	emical tests used f	for the identification	ation of bacteria			4
	a) II	MViC					
	b) F	ermentation of glu	icose, sucrose, a	and lactose- acid	and gas producti	ion	
	c) Mannitol motility test						
	d) Starch hydrolysis						
	e) C	Catalase test					
	f) C	Oxidase test					

Text Books/References

- 1. Atlas, R.M. 1984. Basic and practical Microbiology. Mac Millan Publishers, USA. 987 pp.
- 2. Black, J.G. 2008. Microbiology principles and explorations. 7th edition. John Wiley and Sons Inc., New Jersey 846 pp.
- 3. Boyer, R. 2002, Concepts in Biochemistry 2nd Edition, Brook/Cole, Australia.
- 4. Caldwell, D.R. 1995 Microbial Physiology and Metabolism. Brown Publishers
- Dubey R.C. and Maheshwari D.K. 1999. A Textbook of Microbiology, 1st edition, S. Chand & Company Ltd.
- 6. Felix Franks, 1993. Protein Biotechnology, Humana Press, New Jersey.
- 7. Harper, 1999. Biochemistry, McGraw Hill, New York
- 8. Lodish, H.T. Baltimore, A. Berck B.L. Zipursky, P. Mastsydaire and J. Darnell. 2004. Molecular Cell Biology, Scientific American Books, Inc. Newyork
- 9. Madigan, M.T., Martinko J.M., Dunlap P.V., Clark D.P. 2009. Brock Biology of Microorganisms, 12th edition, Pearson International edition Pearson Benjamin Cummings
- Michael Pelczar, Jr., Chan E.C.S., Noel Krieg 1993. Microbiology Concepts and Applications, International ed, McGraw Hill.
- 11. Moat, A. G., Foster, J.W. Spector. 2004. Microbial Physiology 4th Edition Panama Book Distributors.
- 12. Nelson, and Cox, 2000. Lehninger Principles of Biochemistry, Elsevier Publ.
- 13. Palmer, T. 2001. Biochemistry, Biotechnology and Clinical Chemistry, Harwood Publication, Chichester.
- 14. Pommerville, J.C. 2013. Alcamo's Fundamentals of Microbiology. Jones and Bartlett.
- 15. 16. Schlegel, H.G. 1995. General Microbiology. Cambridge University Press Cambridge, 655 pp.

- 16. Stanier, Ingraham et al. 1987. General Microbiology, 4th and 5th edition Macmillan education limited. International, edition 2008, McGraw Hill.
- 17. Stryer, L, 1995. Biochemistry, Freeman and Company, New York.
- Talaro, K.P. 2009. Foundations in Microbiology, 7th International edition McGraw Hill.
 Tortora, G.J., Funke, B.R., Case, C.L. 2008. Microbiology-An Introduction, 10th ed. Pearson Education.
- 20. Voet and Voet, 1995; Biochemistry, John Wiley and Sons, New York.
- 21. Willey, J. M, Sherwood, L., Woolverton, C. J., and Prescott, L. M. (2008). Prescott, Harley, and Klein's microbiology. New York: McGraw-Hill Higher Education.

SEMESTER III ELECTIVE – I – BIOSTATISTICS AND INTELLECTUAL PROPERTY RIGHTS

Sessions	Total Contact	Ma	arks	Duration of	Total Marks	
Per Week	Hours	Internal	End Semester	Examination		
	261	Assessment	Exam	4.00.1	50 Marks	
2 hours	26 hours	10 marks	40 marks	1.30 hours		
Unit-1 Biost					13 Hours	
	to Biostatistics-					
· ·	a: Qualitative vs. Q	uantitative, Scale	s of measurement	: Nominal, Ordina	1,	
Interval, Rati			0.1	m 1 1 1	1	
	tion and Presenta				d 2	
	, Graphical represer					
	Statistics - Measure			ın, Mode, Measur	es 3	
	: Range, Variance, S			1 11	1	
	and Distributions		of probability, No	ormal and binomi	al 2	
	applications in biolo		•			
	esting - Hypothesis				on 4	
	e and significance, I		NOVA (basic conc	ept only)	10 11	
	ectual Property Ri		C IDD ;	·	13 Hours	
	to IPR -Definit				of 2	
	roperty: Patents, Co					
	d Patent Filing		1	•		
	utility), Patent f),	
	sms and patents: spe					
	Taterial and IP - P					
	knowledge and be	enerit snaring, i	Role of IPK in	microbiology ar	a	
biotechnolog	-	1 A 4 D): C 4 1 1	1 1	n 3	
Biosafety, Bioethics, and Legal Aspects - Biosafety levels and risk groups in						
	microbiology, Ethical issues in the use of biological data and research, Regulations related to bioprospecting and biodiversity (CBD, Nagoya Protocol)					
				1	2	
	s and Applications					
	tes (e.g., CRISPR,	Bi cotton), Role	of IPK in acade	emic and industri	11	
microbiology	/					

References

- 1. Miller, Arthur R. & Davis, Michael H. Intellectual Property: Patents, Trademarks and Copyright in a Nutshell, 7th Edition, 2020
- 2. Wadehra, B.L. 2016. Law relating to patents, trademarks, copyright designs and geographical indications. 5th edition, Universal Law Publishing.
- 3. Rosner, Bernard Fundamentals of Biostatistics, 8th Edition, 2015
- 4. Triola, Marc M. & Triola, Mario F. Biostatistics for the Biological and Health Sciences, 2nd Edition, 2018

- 5. Pandey, Neeraj&Dharni, Khushdeep-Intellectual Property Rights, 2nd Edition, 2014
- 6. **Bouchoux, Deborah E.** Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets, 6th Edition, **2019**

BANGALORE UNIVERSITY, BANGALORE

Syllabus for B.Sc., Microbiology CBCS, SEMESTER- IV

MBT-401: GENETICS & MOLECULAR BIOLOGY

Sessions	Total Contact	Ma	arks	Duration of	Total Marks
Per Week	Hours	Internal	End Semester	Examination	
		Assessment	Exam	21	100 Marks
4	56	20 marks	80 marks	3 hours	14 11
Unit 1: Gene		agitions of DNA	Pr DNIA Watson	er Crials madal	14 Hours
	s: Chemical composition of DNA: A, B, ar				
rRNA & t RN		ia 2, superconn	ig of Divit, Type	g of the vita initial	•••
	tion in Prokaryot	es: Semi, Conser	vative methods, re	olling circle mode	el, 5
	plication, primers				
	(Theta model).				
	ombination in bac				
	tion: Griffith's exp	eriment and me	chanism, Transdi	uction: generalize	ed
and specialize	ea. Ilation of gene expi	rossion P. Mutat	ions		14 Hours
	of gene expression			orobes Pogulato	
mechanisms		Positive and		gulation. Oper	-
	cistronic mRNA.				
Attenuation.		F, <u>-</u>	F,	₁	
Regulation o	flytic & lysogenic	life cycle in bact	eriophage (λ phag	ge). Control of lyt	tic 2
cycle by regu	latoryproteins.	-		-	
Mutations-	Molecular basis	of mutation, sp	ontaneous and i	induced mutation	ns, 6
detection and	isolation of mutant	s (Replica plate 1	nethod).		
Unit 3: Mole	ecular Biology – Tr	anscription			14 Hours
Prokaryotic	Transcription: Tr	anscription bubb	ole, Stages of tran	scription, Bacteri	ial 5
RNA polymo	erase - structure ai	nd mechanism,	Recognition of pr	comoters and DN	A
melting, Initi	ation, Elongation, T	ermination, Abo	rtive, Transcription	n inhibitors.	
Eukaryotic	Transcription:RNA	A polymerases in	Eukaryotes- Typ	es and Mechanis	m 5
of RNA pol	ymerase.Promoters	, Transcription	factors, basal app	paratus, Enhance	rs,
silencers. Init	tiation, elongation,to	ermination. Trans	cription inhibitors		
RNA Splici	ng and Processin	g: mRNA capp	ping, pre-mRNA	splicing, snRNF	Ps, 4
spliceosome,	types of splicing,	polyadenylation,	RNA maturation	, Catalytic RNAs	
auto splicing,	, ribozymes.				
Unit 4: Mole	Unit 4: Molecular Biology – Translation				
	Translation: structure of ribosome, charging of tRNA, differences between initiator				
tRNA and elongator tRNA. Steps in translation - Initiation, elongation, and					
termination.					
Role of initiation factors in bacterial translation, Formation of initiation complex,					ex. 4
	peptide bond for			-	
termination.	1 1	, F-F 		J,	
	petween prokaryotic	and eukarvotic	translation Regula	ation of translation	on. 3
	onal modifications	· · · · · · · · · · · · · · · · · · ·			
1 OSt translati	onai mounications (or proteins.			

SEMESTER IV MBT-402 – GENETICS & MOLECULAR BIOLOGY

Ses	sions	Total Contact	Ma	arks	Duration of N		otal larks
Per	Week	Units	Internal End Semester Examination Assessment Exam		50 1	50 Marks	
	3	12	10 marks	40 marks	3 hours		
No.	Experi	iments					Units
1	Prepara	ation of buffers used	l in Molecular Bi	ology - PBS, TAE	, TBE, and TE bu	ffers	1
2	Estima	tion of DNA by DP	A method				1
3	Estima	tion of RNA by Orc	inol method				1
4	Determ	nination of MIC of a	intimicrobial agei	nts			2
5	Evalua	tion of antimicrobia	l antibiotic sensit	tivity tests-paper d	isc plate method		1
6	Develo	pment of antibiotic	resistance in bac	teria			1
7	Extract	tion of crude DNA 1	rom bacteria by p	henol-chloroform	method		1
8	Isolatio	on of plasmid DNA	from bacteria and	d separation by gel	electrophoresis		1
9	Measu	rement of β-galactor	sidase activity in	stimulated and cor	ntrol cells of E.co.	li .	2
10	Charts on genetic recombination in bacteria					1	
	a) Conjugation- F+ v/s F-, Hfr+ v/s F-, F' v/s F-						
	b) Transformation- Griffith's experiment and mechanism						
	c) Transduction- ge	neralized and spe	ecialized			

Text Books/References

- 1. Verma, P.S. & Agarwal, V.K. (2018). *Cell Biology, Genetics, Molecular Biology, Evolution and Ecology* (19th ed.). S. Chand & Company Ltd.
- 2. **Gupta, P.K.** (2020). *Genetics: Classical to Modern* (5th ed.). Rastogi Publications.
- 3. **Rastogi, S.C.** (2019). *Cell and Molecular Biology* (8th ed.). New Age International Publishers.
- 4. Satyanarayana, U., & Chakrapani, U. (2016). Genetics (1st ed.). Elsevier Health Sciences.
- 5. Singh, B.D. (2018). Genetics (11th ed.). Kalyani Publishers.
- 6. **Pierce, B.A.** (2020). *Genetics: A Conceptual Approach* (7th ed.). W.H. Freeman and Company.
- 7. **Russell, P.J.** (2016). *iGenetics: A Molecular Approach* (3rd ed.). Pearson Education.
- 8. **Brown, T.A.** (2017). *Genomes 4* (4th ed.). Garland Science, Taylor & Francis Group.
- 9. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). *Molecular Biology of the Cell* (6th ed.). Garland Science.
- 10. **Freifelder, D.** (1987). *Molecular Biology* (2nd ed.). Narosa Publishing House (Indian Edition), originally published by Jones and Bartlett Publishers.
- 11. Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., & Losick, R. (2017). *Molecular Biology of the Gene* (7th ed.). Pearson Education.
- 12. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., & Matsudaira, P. (2021). *Molecular Cell Biology* (9th ed.). W.H. Freeman and Company.
- 13. Snustad, D.P., & Simmons, M.J. (2018). Principles of Genetics (7th ed.). Wiley India Pvt. Ltd.
- 14. Lewin, B. (2017). Genes XII (12th ed.). Jones and Bartlett Learning.
- 15. **Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., & Doebley, J.** (2019). *Introduction to Genetic Analysis* (12th ed.). W.H. Freeman and Company.

SEMESTER IV

ELECTIVE – II – COMPUTATIONAL BIOLOGY WITH AI APPLICATIONS

Sessions	Total Contact	Ma	arks	Duration of	Total Marks			
Per Week	Hours	Internal	End Semester	Examination				
		Assessment	Exam		50 Marks			
	2 hours 26 hours 10 marks 40 marks 1.30 hours							
Unit-1 Introduction to Bioinformatics								
	n to Bioinformat		•	•	e, 2			
	n microbiology and		**					
Biological I	Databases & Type	es: Primary, sec	ondary, and spe-	cialized database	s, 5			
Nucleotide d	latabases: Genbank	t, EMBL, DDBJ	, Protein database	es: UniProt, Swis	S-			
Prot, TrEME	BL, Structure databa	ases: PDB, Micr	obial genome dat	abase (MBGD)				
Sequence .	Alignment:Conce	pt of sequence	e similarity.Too	ols for sequence	e 5			
comparison:	: FASTA and	BLAST.Pairwis	se alignment:	global alignme	nt			
	-Wunsch algorit		•					
algorithm).N	Multiple sequence	alignment using	g Clustal Omega.					
Data Forma	its - FASTA, GenE	Bank, PDB file fo	ormats.		1			
Unit-2 Appl	ications of Bioinfo	ormatics & AI			13 Hours			
Genomics a	nd Genome Anno	otation – Restric	ction mapping, O	RF prediction ar	nd 3			
gene annotat	ion, Tools: NEB co	utter and ORF fir	nder					
Phylogenetic	s and Evolutionar	y Analysis: Fund	lamentals of phylo	genetic tree	3			
construction.	Tree-building meth	ods: UPGMA, W	PGMA, Centroid	, Neighbor-Joining	5,			
Maximum Li	kelihood, and Maxi	mum Parsimony.						
Structural	Bioinformatics -	Protein structu	re basics (prima	ry to quaternary), 2			
Homology modelling and Threading methods of protein structure prediction								
Applications in Microbial Research -Introduction to molecular docking and drug								
discovery methods.								
Emerging Areas and Case Studies - Role of AI/ML in								
bioinformatics, Bioinformatics in outbreak tracking (e.g., SARS-CoV-2), Ethical								
consideration	ns and data sharing							

SEMESTER IV COMPULSORY PRACTICAL COMPUTATIONAL BIOLOGY WITH AI APPLICATIONS

Sessi	ions	Total Contact	Ma	Marks		Total Marks	
Per V	Week Units		Units Internal End Semester Assessment Exam		Examination	50 Marks	
3		10	10 marks	40 marks	3 hours		
No.	Expe	eriments				Units	
1	Retri	eval of Nucleotide a	and protein seque	nces from databas	es.	1Unit	
2	Restriction mapping by NEBCUTTER.						
3	Pairw	vise and multiple ali	gnment of seque	nces.		1Unit	
4	Seque	ence similarity searc	ch-FASTA and B	LAST.		1Unit	
5	Evolu	utionary studies / Ph	ylogenetic analy	sis.		1Unit	
6	Ident	ification of genes in	genomes.			1Unit	
7	Prime	er design by primer	BLAST.			1Unit	
8	Protein databank retrieval and visualization using RasMol.						
9	Secondary structure prediction of proteins.						
10	Rama	achandran plot analy	vsis of protein 3D	structures.		1Unit	

References

- 1. Benjamin Lewis. Genes IX (10th Ed.). Jones and Bartlett publishers. USA. 2018.
- 2. Dubitzky W et al. Fundamentals of data mining in genomics and proteomics (2nd Ed.) Springer publishers.USA.2013.
- 3. Griffiths AJF. An Introduction to Genetic Analysis (11th Ed.). W. H. Freeman publisher. NY. 2015.
- 4. Josip Lovric Introducing Proteomics: From concepts to sample separation, mass spectrometry and data analysis. 2nd edition. Wiley-Blackwell publishers.UK.2016.
- 5. Liebler D C. Introduction to Proteomics-Tools for the New Biology (3rd Ed.). John R. Humana Press Totowa. NJ. 2017.
- 6. Michel Blot. Prokaryotic Genomics (1st Ed.) Springer publishers.2002.
- 7. Peter M Gresshoff. Plant Genome Analysis (1stEd.), CRC Press.UK.1994.
- 8. Principles of Gene Manipulation and Genomics, SB Primrose and RM. Twyman, 7th Ed.). Blackwell Publishers.UK.2007.
- 9. Richard Twyman, Principles of Proteomics (1st Ed.). Wiley-Blackwell publishers.UK.
- 10. Smith D.W. Bio-computing Informatics and the Genome Projects (1st Ed.) AcademicPress.USA.1993.
- 11. John R S Finchman. Genetic Analysis Principles, Scope and Objectives (1st Ed.). Blackwell Science. Singapore.1994.
- 12. Terence A B.Genomes (2nd Ed.). Bios Scientific Publishers.UK.2002.