BENGALURU CITY UNIVERSITY I SEMESTER B.Sc. MATHEMATICS(CORE) MODEL QUESTION PAPER - 1(2021-22 onwards) NEP

Max Marks: 60

Time: 3hrs

(6x2=12)

I. Answer any SIX questions.

1. Find the characteristic equation of the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$

- 2. Define Rank of a matrix.
- 3. Find the n^{th} derivative of $cos^2 x$.
- 4. Prove that every differentiable function is a continuous function.
- 5. If $z = x^3 3xy^2$ then show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 6. Evaluate $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$
- 7. Verify Lagrange's mean value theorem for f(x) = (x-1)(x-2) in [0,4]
- 8. Prove that there is a minimum at (0,0) for the function $f(x) = x^3 + y^3 3xy$

II. Answer any THREE questions.

(3x4=12)

9. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & -1 & 4 \\ 2 & 4 & 3 & 5 \\ 3 & 2 & 6 & 7 \end{bmatrix}$ by reducing it to row reduced echelon

form.

10. Find the real value of λ for which the system the system has non-zero solution

$$(1-\lambda)x + 2y + 3z = 0$$

 $3x + (1-\lambda)y + 2z = 0$
 $2x + 3y + (1-\lambda)z = 0$

11. Find the Eigen values and the corresponding Eigen vectors of the matrix

$$\mathbf{A} = \begin{bmatrix} 4 & 1 \\ -1 & 2 \end{bmatrix}$$

12. State and prove Cayley-Hamilton theorem.

13. If $A = \begin{bmatrix} 0 & 0 & 1 \\ 3 & 1 & 0 \\ -2 & 1 & 4 \end{bmatrix}$ find A^3 and A^{-1} , by using the Cayley-Hamilton theorem.

III. Answer any THREE questions.

14. Discuss the continuity of f(x)=
$$\begin{cases} x^2 - 1, \text{ for } x < 1\\ 1 - \frac{1}{x}, \text{ for } x > 1\\ 0, \text{ for } x = 1 \end{cases}$$
 at x=1

15. Examine the differentiability of f(x)= $\begin{cases} x^2, x \le 3\\ 6x-9, x > 3 \end{cases}$ at x=3

16. Prove that a function which is a continuous in a closed interval is bounded.

17. Find the *n*th derivative of $\frac{4x}{(x+1)^2(x-1)}$ 18. If $y = e^{m\sin^{-1}x}$ prove that $x^2y_{n+2} - (2n+1)y_{n+1} - (n^2 - m^2)y_n = 0$

IV. Answer any THREE questions.

19. State and prove Rolle's Theorem

20. State and prove Taylor's theorem.

21. Expand the function f(x) = log(1+x) around x=1 upto the term with x⁴ by using Taylor's series.

22. Expand $e^{\sin x}$ up to the term containing x⁴ by Maclaurin's expansion

23. Evaluate a)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{\log(1+x)}{x^2} \right) = b \lim_{x \to 0} \left(\frac{1}{x} \right)^{2\tan x}$$

V. Answer any THREE questions.

24. If u=f(r) where $r = \sqrt{x^2 + y^2 + z^2}$ show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2}{r}f'(r)$ 25. If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right), x \neq y$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$

26. If $x = r \cos \theta$, $y = r \sin \theta$, then prove that $\frac{\partial(x, y)}{\partial(r, \theta)} \times \frac{\partial(r, \theta)}{\partial(x, y)} = 1$.

27. Expand $e^x siny$ by Taylor's theorem in powers of x and y as for as third degree terms.

28. Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 2$

Muif

Chairperson Department of Mathematics Bengaluru City University Central College Campus Bengaluru-560001.

(3x4=12)

(3x4=12)

(3x4=12)